

Treatment of Relapse in Pediatric Patients with Acute Lymphoblastic Leukemia in Argentina: Results from a Clinical Trial and a Prospective Cohort

Myriam R. Guitter®

Servicio de Hematología y Oncología, Hospital de Pediatría S.A.M.I.C J.P. Garrahan. Buenos Aires, Argentina

Acute leukemias represent the most frequent oncological disease in pediatrics. According to the Argentine Pediatric Oncology Hospital Registry (ROHA), they account for 36% of childhood neoplasms; of these, 75% are acute lymphoblastic leukemias (ALL) and 25% are acute myeloblastic leukemias (AML)¹.

Rates of cure of ALL in developed countries can reach 90%; however, in Argentina, they are approximately 70%. The most frequent cause of treatment failure is disease relapse³.

Relapses represent 15% in more developed countries and 25-30% in Argentina. The prognostic factors for relapses are the time elapsed since the initial diagnosis, the site of relapse, the immunophenotype, the previously instituted treatment, and minimal residual disease (MRD)⁴, i.e., the response to the administered treatment. According to the BFM group (Berlin-Frankfurt-Münster Study Group)⁵, taking these parameters into account, high-risk (HR) relapses are those that occur before 30 months from the diagnosis (very early before 18 months and early between 18 and 30 months from the initial diagnosis), in bone marrow (BM) or combined (cBM), with B-cell immunophenotype, with HR also including T-cell immunophenotype marrow relapses regardless of the time elapsed since the initial diagnosis. The COG⁶ classifies relapses using the minimal residual disease (MRD) value determined by flow cytometry (FC). For low-risk (LR) relapses: late medullary and extramedullary relapses with an MRD of < 0.1% intermediate risk (IR) at the end of the first block); medullary and extramedullary relapses with an MRD of $\geq 1\%$ at the end of the first block; and for HR relapses: early precursor B marrow and extramedullary relapses and T-cell immunophenotype relapses, regardless of the time since the diagnosis of the initial disease. In recent decades, the prognosis for patients who relapsed within 30 months from diagnosis has not exceeded an event-free survival of 50%, and it is even lower for second and third relapses.

Regarding the subpopulations analyzed in the article by Makiya et al.8, it is worth noting that they are two different subpopulations; some patients were exposed to laclofarabine, though possible biases have been corrected. Treatment with this was initially adopted in the prospective cohort, according to the treating physician's criteria, which remain unknown. Additionally, the sample size in both populations is limited. These variables could bias the obtained results, and it would be valuable to evaluate all patients who underwent transplantation and those who did not to consider transplant-related mortality9 in both groups, regardless of the treatment received. Considering the mentioned situation, clofarabine could be introduced in very well-defined cases, such as in patients with a diagnosis of high-risk relapsed ALL who, after a first cycle of chemotherapy based on the BFM strategy, do not respond or do not achieve MRD negativity, or in those high-risk relapses of patients who were initially treated as high-risk ALL at diagnosis, or in patients with second relapses/refractory disease¹⁰, provided that adequate clinical support measures are available and that there is the possibility of performing a hematopoietic progenitor cell transplant if the patient achieves a second complete remission. Otherwise, referral to a more complex center would be mandatory.

Relapsed ALL continues to be a problem, especially in our setting. New therapeutic strategies such as blinatumomab¹¹, inotuzumab¹², nelarabine¹³, and CAR-T cells¹⁴ could be effective, though not all centers in the country have the resources to use them, and it is still necessary to define their efficacy to apply them in our setting, minimizing the cost of administering expensive therapies without definitively proven efficacy.

Author for correspondence: mguitter@garrahan.gov.ar, Guitter MR.

Received: 05/20/23 Accepted: 05/24/24 Online: 05/27/2024

DOI: http://doi.org/10.51987/revhospitalbaires.v44i1.3058

How to cite: Guitter MR. Treatment of Relapse in Pediatric Patients with Acute Lymphoblastic Leukemia. Rev. Hosp. Ital. B. Aires. 2024;44(1):e000035

It is essential to adequately administer first-line treatment promptly, in the correct form, and according to the complete therapeutic regimen to reduce the risk of relapses and to continue investigating possible treatment lines for relapsed ALL according to the social and economic realities of Argentina and other low-resource countries.

Conflicts of interest: The author declares no conflicts of interest.

REFERENCES

- Moreno F, Chaplin A. Registro oncopediátrico argentino [Internet]. 7a ed. Ciudad Autónoma de Buenos Aires: Instituto Nacional del Cáncer; 2021 [citado 2024 may 5]. Disponible en: https://bancos.salud.gob.ar/ sites/default/files/2022-07/07-22-Registro-oncopedi%C3%A1tricoargentino.pdf.
- 2. Guitter M, Alfaro E, Rossi J, et al. Resultados del tratamiento de leucemias linfoblásticas agudas recaídas en pediatría: experiencia en una institución. Hematología. 2010;14(1): 4-10.
- Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood. 2020;136(16):1803-1812. https://doi.org/10.1182/blood.2019004043.
- Geyer MB, Tallman MS. Digging deeper in relapsed acute lymphoblastic leukemia: impact of MRD status on outcome in second remission. Leuk Lymphoma. 2018;59(2):269-271. https://doi.org/10.1080/10428194.2 017.1355971.
- Eckert C, Henze G, Seeger K, et al. Use of allogeneic hematopoietic stemcell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31(21):2736-2742. https:// doi.org/10.1200/JCO.2012.48.5680.
- 6. Brown PA, Ji L, Xu X, et al. A randomized phase 3 trial of blinatumomab

- vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lymphoblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of blinatumomab: a report from Children Oncology Group Study AALL1331 [abstract]. Blood. 2019;134(Suppl 2):LBA-1. https://doi.org/10.1182/blood-2019-132435.
- Harned TM, Gaynon P. Relapsed acute lymphoblastic leukemia: current status and future opportunities. Curr Oncol Rep. 2008;10(6):453-458. https://doi.org/10.1007/s11912-008-0070-3.
- Makiya ML, Dibar E, Altuna D, et al. Tratamiento de la recaída de pacientes pediátricos con leucemia linfoblástica aguda en la Argentina: resultados de un ensayo clínico y una cohorte prospectiva. Rev Hosp Ital B.Aires. 2024;44(1):e0000256. https://doi.org/10.51987/revhospitalbaires. y44i1.256.
- 9. Oskarsson T, Söderhäll S, Arvidson J, et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(4). https://doi.org/10.1002/pbc.26909.
- Harned TM, Gaynon PS. Treating refractory leukemias in childhood, role of clofarabine. Ther Clin Risk Manag. 2008;4(2):327-336. https://doi. org/10.2147/tcrm.s2941.
- Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836-847. https://doi.org/10.1056/NEJMoa1609783.
- Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474-2487. https://doi.org/10.1002/cncr.32116.
- Whitlock JA, Malvar J, Dalla-Pozza L, et al. Nelarabine, etoposide, and cyclophosphamide in relapsed pediatric T-acute lymphoblastic leukemia and T-lymphoblastic lymphoma (study T2008-002 NECTAR). Pediatr Blood Cancer. 2022;69(11):e29901. https://doi.org/10.1002/pbc.29901.
- Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi. org/10.1038/s41408-021-00459-7.