Cribado neonatal en atrofia muscular espinal: un desafío para cambiar la historia natural
Contenido principal del artículo
Resumen
Introducción: la atrofia muscular espinal (AME) es la primera causa de origen genético de muerte en la infancia. En los últimos 20 años han sido excepcionales los avances en el conocimiento de su base genética, de su historia natural y se han desarrollado estándares de cuidado y nuevas terapias. Este veloz aumento del conocimiento ha llevado al desarrollo de terapias eficaces para esta devastadora enfermedad, pero el tiempo son
neuronas, y esa frase nos lleva a pensar la importancia del diagnóstico precoz y, por qué no, del diagnóstico presintomático mediante pesquisa neonatal.
Métodos: revisión de la bibliografía disponible, a través de búsqueda en PubMed y Google para trabajos no indexados o publicaciones de organismos de Salud.
Resultados: varios estudios clínicos han mostrado la mayor eficacia del tratamiento en pacientes presintomáticos, por lo que lograrlo en estos pacientes llevaría a cambiar radicalmente la historia de esta enfermedad.
Conclusión: es importante analizar y promover el desarrollo de pilotos para pesquisa neonatal en vistas a lograr experiencia para, a partir de ello, pensar en la posibilidad de incorporarlo a programas nacionales.
Downloads
Detalles del artículo
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Cómo citar
Referencias
Sumner CJ, Paushkin S, Ko CP. Spinal muscular atrophy: disease mechanisms and therapy. Amsterdam: Academic Press; 2016.
Bartlett A, Kolb SJ, Kingsley A, et al. Recruitment & retention program for the NeuroNEXT SMA Biomarker Study: Super Babies for SMA! Contemp Clin Trials Commun. 2018;11:113-119. DOI: https://doi.org/10.1016/j.conctc.2018.07.002
Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72 400 specimens. Eur J Hum Genet. 2012;20(1):27-32. DOI: https://doi.org/10.1038/ejhg.2011.134
López-Bastida J, Peña-Longobardo LM, Aranda-Reneo I, et al. Social/economic costs and health-related quality of life in patients with spinal muscular atrophy (SMA) in Spain. Orphanet J Rare Dis. 2017;12(1):141. DOI: https://doi.org/10.1186/s13023-017-0695-0
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103-115. DOI: https://doi.org/10.1016/j.nmd.2017.11.005
Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007;22(8):1027-1049. DOI: https://doi.org/10.1177/0883073807305788
Tizzano EF. La atrofia muscular espinal en el nuevo escenario terapéutico. Rev Méd Clín Condes. 2018;29(5):512-520. DOI: https://doi.org/10.1016/j.rmclc.2018.08.001
Monani UR, Lorson CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999;8(7):1177-1183. DOI: https://doi.org/10.1093/hmg/8.7.1177
Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Ther. 2017;24(9):529-533. DOI: https://doi.org/10.1038/gt.2017.52
Gubitz AK. The SMN complex. Exp Cell Res. 2004;296(1):51-56. DOI: https://doi.org/10.1016/j.yexcr.2004.03.022
Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883-891. DOI: https://doi.org/10.1002/ana.25101
Govoni A, Gagliardi D, Comi GP, et al. Time is motor neuron: therapeutic window and its correlation with pathogenetic mechanisms in spinal muscular atrophy. Mol Neurobiol. 2018;55(8):6307-6318. DOI: https://doi.org/10.1007/s12035-017-0831-9
Kraszewski JN, Kay DM, Stevens CF, et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet Med. 2018;20(6):608-613. DOI: https://doi.org/10.1038/gim.2017.152
Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197-207. DOI: https://doi.org/10.1016/j.nmd.2017.11.004
Passini MA, Bu J, Richards AM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18. DOI: https://doi.org/10.1126/scitranslmed.3001777
Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723-1732. DOI: https://doi.org/10.1056/NEJMoa1702752
Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625-635. DOI: https://doi.org/10.1056/NEJMoa1710504
De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord. 2019;29)11):842-856. DOI: https://doi.org/10.1212/WNL.92.15_supplement.S25.001
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713-1722. DOI: https://doi.org/10.1056/NEJMoa1706198
Al-Zaidy SA, Kolb SJ, Lowes L, et al. AVXS-101 (Onasemnogene Abeparvovec) for SMA1: comparative study with a prospective natural history cohort. J Neuromuscul Dis. 2019;6(3):307-317. DOI: https://doi.org/10.3233/JND-190403
Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28(3):271-274. DOI: https://doi.org/10.1038/nbt.1610
Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med. 2013;19(1):40-50. DOI: https://doi.org/10.1016/j.molmed.2012.11.002
Mendell J, Al-Zaidy S, Shell R, et al. AVXS-101 phase 1 gene replacement therapy clinical trial in SMA type 1: continued event free survival and achievement of developmental milestones. Neurology. 2018;90(15 Suppl):S29.001. DOI: https://doi.org/10.1212/WNL.90.15_supplement.S29.001
Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153-1161. DOI: https://doi.org/10.2147/TCRM.S172291
Day JW, Chiriboga CA, Crawford TO, et al. Onasemnogene Abeparvovec-xioi gene therapy for spinal muscular atrophy type 1 (SMA1): phase 3 US study (STR1VE) update [Internet]. Chicago,Il: Muscular Dystrophy Association; 2020 [citado 2020 nov 16]. Disponible en: https://avexis. medicalcongressposters.com/FileUpload/ QRPDF/Day_1137547_AveXis_MDA STR1VE Update Poster_04.21.20c_Final.pdf. DOI: https://doi.org/10.1212/WNL.94.15_supplement.1828
Strauss KA, Farrar MA, Swoboda KJ, et al. Onasemnogene Abeparvovec-xioi in presymptomatic spinal muscular atrophy: SPR1NT study update as of 31 Dec 2019 [Internet]. Chicago,Il: Muscular Dystrophy Association; 2020 [citado 2020 nov 16]. Disponible en: https://avexis. medicalcongressposters.com/FileUpload/ QRPDF/Strauss_1137543 MDA20 SPR1NT Update Poster_4.20.20_A_Final.pdf.
Poirier A, Weetall M, Heinig K, et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect. 2018;6(6):e00447. DOI: https://doi.org/10.1002/prp2.447
Dhillon S. Risdiplam: first approval. Drugs. 2020;80(17):1853-1858. DOI: https://doi.org/10.1007/s40265-020-01410-z
Andermann A, Blancquaert I, Beauchamp S, et al. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ. 2008;86(4):317-319. DOI: https://doi.org/10.2471/BLT.07.050112
Wilson JM, Jungner YG. Principles and practice of screening for disease. Bol Oficina Sanit Panam. 1968;65(4):281-393.
Serra-Juhe C, Tizzano EF. Perspectives in genetic counseling for spinal muscular atrophy in the new therapeutic era: early pre-symptomatic intervention and test in minors. Eur J Hum Genet. 2019;27(12):1774-1782. DOI: https://doi.org/10.1038/s41431-019-0415-4
Dangouloff T, Burghes A, Tizzano EF, et al. 244th ENMC International Workshop: newborn screening in spinal muscular atrophy May 10-12, 2019, Hoofdorp, The Netherlands. Neuromuscul Disord. 2020;30(1):93-103. DOI: https://doi.org/10.1016/j.nmd.2019.11.002
Glascock J, Sampson J, Connolly AM, et al. Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J Neuromuscul Dis. 2020;7(2):97-100. DOI: https://doi.org/10.3233/JND-190468
Glascock J, Sampson J, Haidet-Phillips A, et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis. 2018;5(2):145-158. DOI: https://doi.org/10.3233/JND-180304
López-Chacón M, Buehner AN, Rao VK. Spinal muscular atrophy diagnosed by newborn screening. Pediatr Neurol Briefs. 2019;33:5. DOI: https://doi.org/10.15844/pedneurbriefs-33-5
Cure SMA. Newborn screening for spinal muscular atrophy [Internet]. Elk Grove Village, Il: Cure SMA; 2019 [citado 2020 nov 6]. Disponible en: https://www.curesma. org/newborn-screening-for-sma/.
Baby’s First Test. Newborn Screening. Conditions by State[Internet]. s.l.: BabysFirstTest.org; 2020 [citado 2020 nov 9]. Disponible en: https://www. babysfirsttest.org/newborn-screening/rusp-conditions#spinal-muscular-atrophy.
Rink B, Romero S, Biggio JR, et al. Carrier screening for genetic conditions. Obstet Gynecol. 2017;129(3):e41-e55. DOI: https://doi.org/10.1097/AOG.0000000000001952
Jalali A, Rothwell E, Botkin JR, et al. Cost-effectiveness of Nusinersen and Universal Newborn Screening for spinal muscular atrophy. J Pediatr. 2020;227:274-280.e2. DOI: https://doi.org/10.1016/j.jpeds.2020.07.033
Boemer F, Caberg JH, Dideberg V, et al. Newborn screening for SMA in Southern Belgium. Neuromuscul Disord. 2019;29(5):343-349. DOI: https://doi.org/10.1016/j.nmd.2019.02.003
Institute for Quality and Efficiency in Health Care. Newborn screening for 5q-linked spinal muscular atrophy [Internet]. Köln: Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen; 2018 Dec 13 [citado 2020 nov 9]. Disponible en https://www.iqwig.de/ download/s18-02_newborn-screening-for- 5q-linked-sma_extract-of-final-report_v1-0. pdf?rev=187046.
Vill K, Kölbel H, Schwartz O, et al. One year of newborn screening for SMA - Results of a German pilot project. J Neuromuscul Dis. 2019;6(4):503-515. DOI: https://doi.org/10.3233/JND-190428
McMillan HJ, Kernohan KD, Yeh E, et al. Newborn screening for spinal muscular atrophy: Ontario testing & follow-up recommendations. Can J Neurol Sci. 2020 Oct 16:1-8.
Chien YH, Chiang SC, Weng WC, et al. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J Pediatr. 2017;190:124-129.e1. DOI: https://doi.org/10.1016/j.jpeds.2017.06.042
Shinohara M, Niba ET, Wijaya YO, et al. A novel system for spinal muscular atrophy screening in newborns: Japanese pilot study. Int J Neonatal Screen. 2019;5(4):1-13. DOI: https://doi.org/10.3390/ijns5040041
Kariyawasam DS, Russell JS, Wiley V, et al. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med. 2020;22(3):557-565. DOI: https://doi.org/10.1038/s41436-019-0673-0
Ben-Shachar S, Orr-Urtreger A, Bardugo E, Shomrat R, Yaron Y. Large-scale population screening for spinal muscular atrophy: clinical implications. Genet Med. 2011;13(2):110-114. DOI: https://doi.org/10.1097/GIM.0b013e3182017c05
Tizzano EF, Finkel RS. Spinal muscular atrophy: a changing phenotype beyond the clinical trials. Neuromuscul Disord. 2017;27(10):883-889. DOI: https://doi.org/10.1016/j.nmd.2017.05.011